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ABSTRACT 

 

Hardware based security is meant by carrying out of reliability protection in ICs rather than the 

logic installed on the IC. Many ICs are produced by some manufacturers outside the network. Under 

such cases there are chances of introducing the trojan in hardware system causing the fatal damage. 

Security of any system has been related to the security of the information being processed. The hardware 

used for information processing has been considered trusted. This information should not get interfered 

by the third parties. Trojans can be employed by cyber-thieves and hackers trying to gain access to user’s 

systems. A Hardware Trojan (HT) is a malicious modification of the circuitry of an integrated circuit. 

A hardware trojan is completely characterized by its physical representation and its behaviour. Unlike 

software viruses and software trojans, hardware trojans cannot be easily eliminated through firmware 

by updating, therefore are more harmful to working systems. 

 

  By and large, the function which can't be duplicated or recovered is called as unclonable 

function. Instead of storing secrets in digital memory, PUFs derive a secret from the physical 

characteristics of the integrated circuit (IC). So, attacker won't be permitted to deliver duplicate of the 

IC/device even with actual access. PUFs can deliver different responses for different difficulties at 

different occasions. Butterfly PUF is a cross-coupled bistable circuit in which the circuit can be forced 

to unsteady state before it settles in any of the possible steady states. 

 

This project shows a solution to prevent hardware trojans by detecting them using side channel 

analysis and also the implementation of Butterfly PUF by using a simulation software called Vivado 

Xilinx 2019. Hardware trojan detection methods try to detect the existence of a trojan which is having 

a high probability by studying output waveforms and the power side channel. However, these methods 

mainly depend on comparing the un-trusted chip with a trusted chip. This project is implemented using 

side channel analysis as it is a compromise of all other methods in parameters like time taken, success 

rate, infrastructure needed, implementation ability, coverage scope. In addition to these this method has 

high performance. Also, in this project we had implemented Butterfly PUF which can be used to in 

circuits in order to have a unique signature avoiding the problem of copying the original circuit. we had 

seen the hardware trojan scientific classification, showing of combinational circuit trojan, and thus most 

natural strategy for trojan recognition i.e., side channel analysis. Finally, we discussed about the PUF 

and its implementation. At long last, we examined about the PUF and its execution. PUF which has the 

singular to extricate the interesting mark from the devices. 
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CHAPTER 1 

INTRODUCTION 

 Nowadays, hardware trojan protection became a hot topic especially after the horizontal silicon industry 

business model. Third party IP is the building block of many critical systems and that arise a question of 

confidentiality and reliability of these blocks. In this work, we present novel methods for system protection 

and Trojan detection that alleviate the need for a golden chip. In this project side-channel analysis-based 

approach were used to detect Hardware Trojans. Also, Butterfly and Ring Oscillator PUF’s has been 

implemented. Dynamic Trojan detection is done using multiple variant voting. Different methodologies can 

be implemented for different trojans.  

1.1 Project Objective  

 The main objective of the project is to insert a hardware trojan and detect it using various methods and thereby 

compare which type of trojan is detected efficiently by which type of methods. The hardware trojan is nothing 

but a malicious circuit which is placed in the integrated chip without effecting its normal functionality.  All 

these detection methods are followed by a flow of process specified as an algorithm in chapter 5. Every time 

the trojan inserted circuit parameters are compared with the golden circuit and then judge if trojan is present 

or not. Butterfly PUF and Ring oscillator PUF were also been implemented through simulation and results had 

been obtained. 

Simulation results are obtained for different circuits which are in Chapter 5.  

1.2 Background  

 Malicious modifications of integrated circuits, referred to as Hardware Trojans, have emerged as a major 

security threat due to widespread outsourcing of IC manufacturing to un-trusted foundries. An adversary can 

potentially tamper with a design in these fabrication facilities by inserting malicious circuitry, leading to 

potentially catastrophic malfunctions in security-critical application domains, such as the military, 

government, communications, space, and medicine. Conventional post-manufacturing testing, test generation 

algorithms, and test coverage metrics often fail to detect Hardware Trojans due to their diversity, complexity, 

and rare triggering conditions. An intelligent adversary can design a Trojan to only trigger under very rare 

conditions on an internal node, which is unlikely to arise during post-manufacturing test, but can be triggered 

during long hours of in-field operation.  

  The detection of Trojans by employing side-channel parameters, such as power trace or delay overhead, is 

limited due to the large process variations in nano scale IC technologies, detection sensitivities of small 

Trojans, and measurement noise. Often these issues mask the effect of Trojan circuits, especially for ultra-

small Trojans. From an adversary’s perspective, the desired features for a successful Trojan are as follows: 
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rarely activated to evade logic-based testing, low overhead to evade side-channel based detection approach, 

and low side-channel signature to evade Design for Security (DfS) hardening mechanisms. The condition of 

Trojan activation is referred to as the trigger, and the node affected by the Trojan is referred to as its payload. 

Trojans can be classified based on their triggering conditions or payload mechanisms. The trigger mechanism 

can be either digital or analog. Digitally triggered Trojans can be classified into combinational and sequential 

Trojans. Trojan can also be classified into digital and analog based on the payload mechanisms. Digital Trojans 

invert the logic values at internal nodes or modify the contents of memory locations, while the analog payload 

Trojans may affect circuit parameters, such as performance, power, and noise margin.   

 A combinational Trojan is activated on the simultaneous occurrences of a particular condition at certain 

internal nodes, while a sequential Trojan act as a time-bomb, exhibiting its malicious effect due to a sequence 

of rare events after a long period of operation. Fig 1.1(a) illustrates the general scenario of a Trojan attack in 

a design, where a Trojan is realized through the malicious modification of the circuit with a trigger condition 

and payload. Fig 1.1 (b) shows an example of combinational Trojan which does not contain any sequential 

elements, and depends only on the simultaneous occurrence of a set of rare node conditions. Conversely, the 

sequential Trojans shown in Fig 1.1 (c) undergo a sequence of state transitions before triggering a malfunction. 

The 3-bit counter causes a malfunction at the node S on reaching a particular count, and the count is increased 

only when the condition a = 1, b = 0 is satisfied at the positive clock-edge. Protection against hardware Trojan 

has been widely explored by researchers. These approaches are based on the following three approaches:   

(1) Specialized functional testing that rely on triggering an unknown Trojan and observing its effect in 

output ports of a design;   

(2) side-channel analysis that rely on observing a Trojan effect in physical parameters, such as supply 

current or path delay and   

(3) design/integration approaches that either prevent a Trojan insertion or facilitate detection during 

production test.  

 

Fig1.1 (a) General model of a hardware Trojan circuit realized through malicious modification of a 

hardware. (b) An example of combinational Trojan. (c) An example of sequential Trojan. 
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1.3 Motivation   

 The main idea for working on hardware trojan detection is to control the cyber-crimes to the maximum extent. 

For example, in the year 2007 the backdoor built into a Syrian radar system was responsible for the system’s 

failure. There are also reports of Trojans being used by the USSR to intercept American communications 

during the cold war. Time to activate a hardware Trojan circuit is a major concern from the authentication 

standpoint.  

 It is also a direct threat to the already vulnerable Internet of Things, meaning that wireless-enabled household 

devices also become potential targets. The problem is such that even previously ‘reputable’ factories are 

vulnerable to attacks, since all that is required is one employee to alter the existing code to include a trojan. 

As most IC designs are extremely large and contain a huge amount of hardware description, these inclusions 

are difficult to detect and the sheer size of the code can require many people having access to the code at 

production level.   

 Regarding military grade products utilizing ICs, the problem of hardware trojans is critical with the threat 

level of the trojan being such that it could potentially be catastrophic. Malicious inclusions of code could cause 

lifesaving equipment to fail, missiles to lose control, and cryptography keys to be leaked. While incidents of 

hardware trojans, are not openly discussed there have been a few noted. In 2007, it was assumed that a 

backdoor built into a Syrian radar system was responsible for the system’s failure. There are also reports of 

trojans being used by the USSR to intercept American communications during the cold war. The problem is 

aggravated further still when considered in relation to the growth in production of counterfeit goods. Such 

goods may be produced in less than reputable factories, so the inclusion of malicious code in the production 

process is far from unrealistic. As counterfeit goods are not generally sold through trustworthy channels, it is 

impossible to recall products found to be unsafe or indeed to produce updated firmware to deal with emerging 

threats. This can expose consumers to a plethora of malicious attacks by hackers. For example, a trojan leaking 

cryptography keys in counterfeit IoT devices could potentially give hackers access to a network of devices 

that can be utilized in ‘Mirai’ like attacks and cannot be recalled or patched In this paper, a hardware trojan is 

created and emulated on a consumer FPGA board. The experiments to detect the trojan in a dormant and active 

state are made using off-the-shelf technologies which rely on thermal imaging, power monitoring, and side-

channel analysis.  

 Unfortunately, those theories are not in nature groundless or out-with the realms of the possible. In fact, several 

of them have already been instantiated. One such rumour of ‘kill switches’ being hidden in commercial 

processors was confirmed by an anonymous U.S. defence contractor who indicated the culprit to be a 

‘European Chip Maker’. The potential consequence of the existence of such a switch could be catastrophic. 

Indeed, as previously highlighted, this particular hardware trojan was blamed for the failure of a Syrian radar 

to detect an incoming air strike. The Threat of the Hardware Trojan. At Design Level The complexity and cost 
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of the design of ICs has grown exponentially over the last decade as the semiconductor industry has scaled to 

sub-micron levels. A typical IC board will go through a rigorous process consisting of several stages. Firstly, 

the specifications must be translated into a behavioural description, usually in a hardware description language 

such as Verilog or VHDL. Once this has been completed, the next phase is to perform synthesis to transform 

the behavioural description into a design implementation using logic gates such as a net-list. Once the synthesis 

has been completed, the net-list is implemented as a layout design and the digital files are passed to the foundry 

for fabrication. As well as outsourcing the production of ICs, many companies are also purchasing third party 

Intellectual Property (IP) cores, and utilizing third party Electronic Design Automation (EDA) tools. Each use 

of third-party software presents a new opportunity for attacks such as hardware trojan insertion, IP piracy, IC 

tampering, and IC cloning. Although these attacks are all of importance, the hardware trojan is by far the most 

dangerous attack, and, as such, has garnered much attention. At Foundry Level As semiconductor technology 

has advanced, the cost of owning foundry has increased dramatically. In 2015, the cost was estimated to be in 

the region of 5 billion USD. As a direct result of this, many companies can no longer afford to fund the 

production process from start to finish, and are outsourcing their production to cheaper foreign foundries. 

Whilst undesirable modifications to ICs should ideally be detectable by pre-silicon verification and simulation, 

this would require a specific model of the entire IC design and this is not always readily available particularly 

where third-party IP cores or EDA tools have been used. In addition, large multi module designs are rarely 

compliant with exhaustive verification.  

 Post silicone approaches to design verification include destructive de-packaging and reverse engineering of 

the IC. However, current techniques do not allow destructive verification of ICs to be scalable. It is also 

possible for an attacker to infect only a portion of the produced ICs, making these tests futile. Most post silicone 

logical testing techniques are also unsuitable for detecting hardware trojans. This is attributed to the stealthy 

nature of the hardware trojan and to the large numbers of differing taxonomy’s that can be employed by the 

attackers. Most hardware trojans are programmed to activate under a specific set of conditions, and a skilled 

attacker would ensure that these conditions were undetectable by the testing routine. This is particularly true 

of trojans targeting sequential finite state machines. Industries Affected Military Hardware trojans are a huge 

threat to many industries. However, security conscious industries, such as the military, are in a particularly 

high-risk bracket and defence departments are very aware of this. The U.S.  

Department of Defense (DoD) has created a “Trusted Foundry Program” to ensure its military equipment 

remains free of hardware trojans by using only accredited foundries. This means that only American foundries 

which are located on the Americal soil and which underwent the strictest vetting process are allowed to work 

on the chips for the U.S. DoD. In addition to vetting the foundries, close attention is being paid to the other 

links in the design and supply chain. While this approach may seem effective, it has its limitations. The 

majority of western foundries are woefully behind their foreign counterparts when it comes to the level of 
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technology they can provide. This seriously limits access to more advanced chips which are required for 

modern avionics and weapons systems.  

 If the attacker creates the trojan through the modification of the existing code, then it will be classified as a 

parametric. Typically, this can be achieved by thinning wires or weakening transistors and flip flops. This type 

of trojan is notoriously hard to detect as the alteration can be minuscule. The next physical characteristic the 

attacker would have to consider would be the size of the hardware trojan. In this context, the size refers to the 

physical extension of the hardware trojan or the number of components it consists of. In case of a large trojan 

consisting of many components, an attacker can distribute these across the IC, placing components where they 

are necessary to execute their payload in accordance with the functions of the hardware trojan. This is known 

as loose distribution. In contrast, a smaller hardware trojan consisting of only a few components allows for the 

components to be placed together as they will occupy only a small part of the layout of the IC. This is known 

as tight distribution.  

 On rare occasions, a determined attacker could regenerate the layout to encompass the hardware trojan, 

moving the components of the IC to accommodate the components of the hardware trojan. This is referred to 

as a structural alteration Activation Characteristics Typically, a hardware trojan will be condition based, 

meaning that its activation will be dependent on a trigger defined by the attacker. The trigger itself will 

generally consist of either a predefined input pattern, or specific internal logic state, or counter value, and can 

be triggered both internally and externally. An externally triggered hardware trojan will usually consist of 

malicious logic within the IC that utilizes an external sensor such as a radio antenna. The attacker will then 

communicate via the compromised component enabling them to trigger the antenna. It is easy to see why this 

can be extremely dangerous when it comes to security conscious industries such as the military. It is not out-

with the realms of the believable to postulate that an attacker could feasibly re-route or switch off a missile via 

a radio signal as suggested.  

 Conversely, an internally triggered hardware trojan will look within the circuitry for the set of conditions that 

will cause it to activate. A typical example of this would be countdown logic. In contrast to the condition-

based trojan that will only activate when its trigger conditions are met, the “always-on” trojan is active from 

the moment of insertion, and relies on internal signals. This type of hardware trojan is generally split into two 

categories; combinational and sequential. A combinational trojan will activate upon detection of a specific set 

of circumstances within the internal signals of the IC. Sequential trojans will also monitor the internal signals 

of the IC. However, instead of looking for a specific condition, they activate when a specific sequence of 

events occurs.  

 

 



  

6 

 

 1.4 Project Outline  

 The project Hardware Insertion and Detection deals with the hardware security domain where securing 

information is vital in this sophisticated contemporary world. Day to day technology has been improving along 

with this the loop holes for hackers are becoming more and causing cyber security problems. In order to prevent 

and control these problems this project gives a scope to control the problems. By continuous analysis of the 

circuit the parameters like path delay can be found changed if trojan is present.  

A circuit is said to be trojan effected if its parameters show a significant change with the parameters of trojan 

free circuit. The trojan free circuit is called the golden circuit. Different trojans can be detected using different 

methodologies. Most popular and effective method is side channel analysis. BPUF and RO PUF circuits 

implementation and their importance is discussed. All these circuits are simulated using Xilinx Vivado and 

reports were generated and the parameter were compared for trojan free and trojan effected circuit.   
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CHAPTER 2 

HARDWARE SECURITY 

2.1 Introduction  

 Hardware is a collection of physical elements that constitutes a computer system. Hardware is used by 

everyone even if they are not aware of it. Hardware in this context might be:   

a. Computer Hardware: Some computer hardware are Processors, firmware, memory etc.  

i. Processors: is the electronic circuitry within a computer that carries out the instructions of a computer 

program by performing the basic arithmetic, logical, control and input/output (I/O) operations specified by the 

instructions   

ii. Firmware: is the combination of a hardware device, e.g., an integrated circuit, and computer 

instructions and data that reside as read only software on that device   

iii.  Memory: Memory refers to the device used to store information for use in a computer.  

 b. Mobile Hardware: Sim Card, RFID/Smart Card, Chip and Pin  

i. Sim Card: is an integrated circuit that is intended to securely store the international mobile subscriber 

identity (IMSI) and the related key used to identify and authenticate subscribers on mobile telephony devices 

(such as mobile phones and computers).  

ii. RFID: is the wireless use of electromagnetic fields to transfer data, for the purposes of automatically 

identifying and tracking tags attached to objects. For example, an RFID tag attached to an automobile during 

production can be used to track its progress through the assembly line.   

iii. Smart Card: is any pocket-sized card with embedded integrated circuits. Smart cards are made of 

plastic, and can provide strong security authentication for single sign-on (SSO) with large organizations  

iv. Chip & Pin: "Chip" refers to a computer chip embedded in the smartcard, and "PIN" refers to a personal 

identification number that the customer must supply. "Chip and PIN" is also used in a generic sense to mean 

any EMV smart card technology that relies on an embedded chip and a PIN.   

c. Future Hardware: PUFs (Physically Unclonable Functions) PUFs have a unique fingerprint in a physical 

object that means if you have an object with one fingerprint; another object with the same fingerprint cannot 

be created. It uses challenge/response for its operations. The challenge/response explains that if a message is 
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sent to a physical object and the physical object is changed to another physical object, and same message is 

sent to the second physical object, the two physical objects react differently because of their unique fingerprint.   

2.2 Attacks on Hardware   

1.Physical Attacks: The main thing that differentiates hardware attacks from software attacks is the 

physicality of the attack done with hardware tools. This raises the bar for hardware attacks because any attacker 

that wants to perform an attack on the hardware needs to have extensive knowledge of the hardware, unlike 

the software attacks that can be done by just downloading a vulnerability tool on the internet to perform attacks.   

2. Secret Key: Generally, the hardware wants to protect a secret so the secret is embedded in a physical object. 

For example, the bank card wants to protect your pin, the pin is encoded in the card and if the attacker can 

probe the chip of the card and read the pin then the card is useless. The secret in the hardware should not be 

writable even though it provides the information on the card when placed on a terminal. If we consider 

STRIDE, we have to consider two main points: The Information Disclosure (Confidentiality) which means 

something is hidden, and Tampering (Integrity) which means it is not writable.   

3. Attack Vectors: The hardware that would be used to protect the secret would be fabricated by someone in 

a factory. The factory will either program the secret onto the hardware or send the hardware to the company 

with memory for read access in one component and write access in another component so that the company 

can program the hardware and destroy the write component to avoid rewriting. This approach can't be used 

for all hardware. For example, subway cards need to be rewritten to every month so in that case, the terminals 

have written access to the card but the user doesn’t have write access so it can’t be overwritten by the user. To 

fabricate the hardware, the laboratory/factory needs to be trusted. And to prove they are trustworthy; the 

laboratory gets certified. The certification body sends people in, to audit them, check out the employees and 

their procedures and conclude whether the laboratory is trusted or not.   

4. Supply Chain: After the hardware has been made, it will be shipped to stores that will sell it or it is shipped 

to the consumers from the store. During shipping it could be intercepted by the attackers and tampered with, 

then re-packaged without the knowledge of the store or the consumers. Also, some attacks can be performed 

on point-of-sale terminals when some insider (employees) have access to the terminals and tampered with it 

in the warehouse  

5. Accidents: there are a lot of memory-based devices (e.g., USB Keys, Digital picture frames) which may 

contain malware in them accidentally, which could affect the system of the user. The company that created 

this hardware may not be aware of the malware on the device. Examples of companies that had this kind of 

accidents are IBM, Dell, Samsung, HP, Apple, etc. All the attacks stated above are the main reasons for why 

the user might get a bad hardware.   
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2.3 Attack Circuits  

 RFID, Smart Card, Micro- Controller, ASICS, FPGAs RFID is passive, a signal can be sent to it and it 

responds. It can’t be programmed; it can’t perform any computations based on the signal sent to it. Smart card, 

on the other hand, performs computations based on what was sent to it. Micro-controller is like an ID with no 

chip, ASCIS are fabricated circuits that are custom made to do implementations so all your processors and 

memories are on ASICS. ASICS are expensive because they are custom made, and before the design is 

committed to ASICS, a lot of testing will be done with FPGAs to make sure that circuit actually works. FPGAs 

are programmable chips. When the chip is bought, its blank and it can be programmed with software to do 

whatever you want. They are not as fast as ASCIS because they are general purpose. FPGAs are faster than 

software but slower than ASCIS. Why are we attacking Circuits? The main reason for attacking circuits is to 

recover a secret that had been encoded on a piece of hardware or for the attacker to program a certain value to 

the circuit. The secret could be the actual algorithm itself. Some attackers reverse engineer the algorithm of 

the RFID or Smart Card to find flaws in the algorithm itself. This is because some developer wants to keep the 

algorithm used to protect the circuit a secret due to the fact that the developers are not using a standard 

algorithm. The algorithm used should be a standard algorithm so as to know how to better protect it. The 

Circuit attacks are:   

1. Black Box Testing: To perform this attack, the attacker sends an input to the circuit and receives an output. 

Based on the input and output behavior, the attacker will decide what kind of algorithm to used. An example 

is Speed Gas RFID which are proprietary stream cipher. The attackers found the documentation and modified 

it to discover the cipher used and break the circuit. This type of attack is non-invasive, meaning that the 

card/chip will not be destroyed when probed so it can be used another time. Another method that can be used 

in black boxing is fuzzing in software security which allows large random inputs to the circuit and get strange 

responses like undocumented features, factory testing, etc.   

2. Physical Probing: To perform this attack the attacker sticks a probe unto the chip itself and reads data off 

the chip. Within a circuit, there is a wire that connects components to each other called the bus and the bus is 

where the information would be read as the data is moving around in the bus. The data can also be read off the 

memory location in the circuit. The probe can have a submission precision and it’s an invasive method. A lot 

of circuits are driven by a clock, and if the attacker can slow down the clock it gives a lot of time to the attacker 

to read the voltage of the circuit.  

 3. Reverse Engineering: To perform this attacker, the attacker must acquire the smart card and physically 

expose the circuit. The smart card is manufactured with different layers and each layer is removed until the 

physical circuit is exposed. The attacker then takes high resolution photographs of the circuit and uploads it to 

a computer and uses a code and machine learning application to figure out what the actual circuit does. Once 
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the circuit is figured out, then the algorithm used in the smart card also is exposed and the algorithm can be 

broken. An example of a smart card where the reverse engineering attack was performed on is the Mi fare 

(Subway card).  

4. Fault Generation: Some technologies fail. E.g., A TV provider sends a message to the client asking if the 

clients want to renew the subscription. If TV providers don’t receive a message NO from the clients, they 

don’t disconnect, so the clients are granted access. So, some clients can just cut the power at the right time to 

prevent the response to the TV providers, since they won’t disconnect with no response. This is a non-invasive 

attack. Other things that can be done are modifying the memory contents (non-invasive), glitch (rapid change) 

the power or clock (non-invasive), heating up components e.g., with a user (semi- invasive), modify chip e.g., 

cutting wires (invasive) etc.  

5. Side Channel Analysis: To perform this attack, the attackers make use of the hardware normally but makes 

sensitive measure of certain things and based on the measurements done, the attacker can infer secrets. An 

example of things to measure is power (the amount of voltage in an ATM), timing analysis in cryptography 

(software effect), electromagnetic emission, acoustic sounds (performed on RSA). These are called side 

channel because they are outside the normal channels. They are non-invasive. It is slower than the normal 

attacks.   

2.4 Counter Measures   

1. Obfuscate data (Scramble, encrypt) on buses   

2. Obfuscate the ASICS layout, 3D stacking   

3. Metal mesh on top of the circuit (if the circuit is probed, it causes a short and the memory resets)  

4. Side Channel: physical shields, asynchronous circuits.   

Also, a decrease in the signals from the circuits of the hardware like the noise or add artificial noise or low the 

circuit’s power. METHODOLOGIES-There is no good methodology for hardware (that means no static 

analysis or dynamic analysis of hardware). It is an open question that needs to be researched on. Most of it has 

to do with domain specific knowledge and it is advisable to follow the requirement engineering process.  

Common criteria/NIST has protection profiles which provide the properties not how to achieve them.   

2.5 Hardware Trojan:  

 A hardware trojan can be described as a malicious alteration or inclusion to an integrated circuit (IC) that will 

either alter its intended function or cause it to perform an additional malicious function.   
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Fig 2.1: Block Diagram of Hardware Trojan Inserted Circuit 

These malicious inclusions or alterations are generally programmed to activate only under a specific set of 

circumstances created by an attacker and are extremely hard to detect when in their dormant state.  

 Block diagram of typical hardware trojan inserted circuit is shown in fig2. 1.  

As technology advances, so does the demand for IC boards leaving many technology companies without the 

resources to produce secure enough ICs to meet current demands.   

This has pushed companies into the ‘fabless’ trend prevalent in today’s semi-conductor industry, where 

companies are no longer attempting to produce the goods in their own factories, but instead are outsourcing 

the process to cheaper factories abroad. This growth brings with it a significant rise in the level of threat posed 

by hardware trojans; a threat that directly affects all companies concerned with products that utilize ICs. This 

encompasses many different industries, including the military and telecommunications companies, and can 

potentially affect billions of devices from mobile phones and computers to military grade aviation and 

detection devices, particularly at a time when wireless devices are being introduced as links in critical 

infrastructure, compounding trust and security issues even further.  

2.5.1 Action Characteristics:  

  The action characteristics of a hardware trojan refer to the effect the trojan will have on the execution 

of its payload. Hardware trojans will typically fall into one of two categories: implicit or explicit. Implicit 

trojans will not change the board’s circuitry of the IC; instead, they will perform their malicious function in 

tandem with the intended function of the board. This makes these trojans easier to detect as they tend to cause 

small path delays on activation and consume more power whilst active.   

  In contrast, an explicit trojan will change the function of the board’s circuitry on activation. This can 

come in the form of a signal alteration or even leaking of information via predefined board pins. These trojans 

tend to cause distinct path delays as well as large changes in circuit’s capacity Hardware Trojan Detection 

requires overcoming numerous challenges. Namely:  
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1. Handling large architectures.   

2. Being non-destructive to the IC.   

3. Being cost effective.   

4. Ability to detect trojans of all sizes.   

5. Authenticating chips in as small a time frame as possible.   

6. Dealing with variations in manufacturing processes.   

7. Detecting all trojan classifications.   

8. Detecting trojans in a reasonable time frame.   

  There is no single method capable of detecting all types of hardware trojans, nor overcoming all the 

challenges described here-above. Over the years, several methods have been developed to detect different 

types of trojans. These methods are described here-after.  

Physical Inspection One of the most obvious method of detection is physical inspection of the board itself. 

This method is sometimes classified as a failure analysis-based technique. Those techniques usually comprise 

two steps:   

(1) Cutting and lifting the moulding coat to expose the circuitry; and   

(2) Performing various scans  

 Functional Testing Often referred to as Automatic Test Pattern Generation (ATPG) this technique is more 

commonly used to locate manufacturing faults; it has been shown to be effective in detecting hardware trojans. 

ATPG involves inputs of ports are stimulated and then the output ports are monitored for variations that may 

indicate a hardware trojan has been activated. Functional testing techniques can also be useful when attempting 

to determine the trigger patterns of conditional trojans. Built-In-Self-Test (BIST) techniques are commonly 

used to detect manufacturing faults and are present in many chips. If unknown or malicious logic is detected 

during these tests a bad checksum result is given, although designed to detect manufacturing faults on some 

occasions these tests can detect hardware trojans.  

Side channel analysis techniques are some of the most commonly used procedures in hardware trojan detection. 

These techniques generally measure signals such as power and path delay, looking for fluctuations potentially 

caused by trojans. Side channel analysis can have a high success rate as even in a dormant state the trojans 

trigger signal will cause some current leak 

 

2.5.2 Payload Characteristics   
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 Hardware Trojans can also be classified based on their intended behaviour. Trojans can be inserted for causing 

malfunction or for leaking sensitive information. In the former case, Trojans alter the functionality of the 

design in some way, while Trojans designed for leaking sensitive information may do so without modifying 

the logic functionality of the design.  

Trojans for Malfunction can be further classified into two subcategories based on whether they cause logical 

malfunction or physical malfunction. Trojans presented in the previous sections cause logic malfunction by 

modifying the values in the LUTs, causing undesired routing between two logic modules, etc. Fig.2.2 shows 

additional examples of payloads affected by Trojans.  

 

Fig: 2.2Diagram showing examples of payloads that can be altered by an implanted Trojan circuit. 

 

 Trojans intended to cause physical damage can create electrical conflicts at the I/O ports or at the 

programmable interconnects. Consider the programmable I/O block in Fig. 2.5. When an I/O port is configured 

to be an input by a design, the configuration cells in the I/O block should disable the output block to prevent 

internal conflicts. A counter-based Trojan can be inserted in the foundry which detects the state of the I/O port 

and begins counting. When the counter counts to the final value, the Trojan may enable the output logic when 

the port is configured as an input. This would cause damaging the system. These Trojans are similar to the 

MELT viruses described in except that Trojans causing physical destruction may also be inserted in the 

foundry.   

The device also contains a decryption module for decrypting the bit-stream using a key stored in a non-volatile 

memory. Security measures in the device  
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(1) Prevent the key from being read and sent to a port by clearing the configuration data and keys when a read 

attempt is made,  

(2) Prevent read-back of the configuration data, and  

(3) Restrict decryption access after configuration.   

 However, all of these measures only prevent malicious code in an IP from accessing the key or configuration 

data. Hardware Trojans can leak the IP in two ways: by leaking the decryption key, or by leaking the design 

itself. An attacker in the foundry can insert an extraneous circuit  to tap the wires connecting the non-volatile 

memory and decryption module. Even if the decryption module is implemented in the logic array by using a 

decryption bit-stream as mentioned in, such an instantiated module must have access to the non-volatile key 

for decryption. A copy of the key can be stored in the Trojan, which may then leak it through side-channels or 

covert-channels. Using side-channels, a Trojan can hide the key in the power traces or by emitting 

electromagnetic radiation containing the information and an attacker can observe these signals to steal the key. 

For example, the MOLES Trojan presented in uses a spread-spectrum technique to leak the key in the power 

traces over several clock cycles. Alternatively, a Trojan may also multiplex the JTAG port, USB port, or any 

other programming port to leak the key through covert channels when the ports are not being used. The Trojan 

MUXes the bit-stream and rather than sending it to the decryption, it may store blocks of the bit-stream at any 

given time and leak them through side-channels or covert-channels.  

 

Fig 2.3 Programmable I/O block containing hardware Trojans to cause logical and electrical malfunction. 

2.5.3 Trojans in Cryptographic Engines 

A possible Trojan attack in a crypto engine can try to subvert the security mechanisms. The payload could 

range from a mechanism that presents dummy keys, predefined by the attacker, instead of the actual 

cryptographic keys used for sensitive encryption or signature verification operations, to leaking the secret 

hardware keys via covert side channels, e.g., information leaked through a power trace. Fig. 2.6 provides 

an example of such a Trojan that attempts to leak a secret key from inside a cryptographic IC through 

power side-channels using a technique called malicious off-chip leakage enabled by side channels (MOLES). 

Even if the IC has been designed to minimize side-channel information leakage, a hardware modification 

could help overcome the protection under specific circumstances where the attacker is in possession of the 

system or physically near the system to extract the secret information. Other targets could be a random 
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number generator used for deriving random session keys for a particular operation or the debug passwords 

used for unlocking test-mode access to security-sensitive signals. Researchers have also proposed leaking 

such secret information over wireless channels by using low-bandwidth modulation of the transmitted 

signal. 

 

Fig 2.4 Trojans with capability of leaking secret information from inside a crypto chip. 

2.5.4 Trojans in General Purpose Processors 

 

In general- purpose processors, an attacker at the fabrication facility can implement a backdoor, which can 

be exploited in the field by a software adversary. For example, modern processors implement a hardware 

chain of trust to ensure that malware cannot compromise the hardware assets such as secret keys and 

memory range protections. By using different stages of firmware and boot code authentication, one can 

ensure that the operating system (OS) kernel and lower levels (such as hypervisor) are not corrupted. 

However, in such systems, the attacker at an untrusted fabrication facility could implement a backdoor 

which disables the secure booting mechanism under certain rare conditions or when presented with a 

unique rare input condition in the hands of an end-user adversary. Similarly, other objectives which could 

be realized with the help of hardware Trojans would be to bypass memory range protections using buffer 

overflow attacks or to gain access to privileged assets by evading the access control protection mechanisms 

implemented in the hardware. 

 

 

2.6 Types of Hardware Trojans  

 There are different types of hardware Trojans like Combinational, Sequential and Hybrid Trojans as shown 

in fig2.5   

 

Fig2.5 Types of Hardware Trojans 
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Trojans are classified based on their trigger and payload mechanisms, as shown in Fig. 2.5. Hardware Trojan 

attacks in different forms: Combinational (whose activation depends on the occurrence of a particular condition 

at certain internal nodes of the circuit) and sequential (whose activation depends on the occurrence of a specific 

sequence of rare logic values at internal nodes). Trojans are based on three attributes: physical, activation and 

action. Based on the activation mechanisms (referred as Trojan trigger) and the part of the circuit or the 

functionality affected by the activation of the Trojan (referred as Trojan payload). The trigger mechanisms can 

be of two types: digital and analog. Digitally triggered Trojans can again be classified into combinational and 

sequential types. Sequentially triggered Trojans (the so-called time bombs), on the other hand, are activated by 

the occurrence of a sequence, or a period of continuous operation. The simplest sequential Trojans are 

synchronous stand-alone counters, which trigger a malfunction on reaching a particular count. The trigger 

mechanism can also be hybrid, where the counts of both a synchronous and an asynchronous counter 

simultaneously determine the Trojan trigger condition. Note that more complex state machines of different 

types and sizes can be used to generate the trigger condition based on a sequence of rare events. In general, it 

is more challenging to detect sequential Trojans using conventional test generation and application, because it 

requires satisfying a sequence of rare conditions at internal circuit nodes to activate them. The number of such 

sequential trigger conditions for arbitrary Trojan instances can be unmanageably large for a deterministic logic 

testing approach. 

2.7 Combinational Trojan 

This trojan is combinational sort of trojan. In this, we will interface the combinational circuit as the hardware 

trojan alongside the Trusted IC's unique circuit i.e.,256:1 mux. 

 

Fig2.6 Combinational trojan inserted in 256:1 MUX 

 

Fig .2.7 Combinationally triggered trojan                   TABLE I: Truth table of circuit shown in Fig. 2.7 

In Fig. 2.7, the trigger and payload are shown for the original circuit C = A.B. The input 00 of AND gate is 

taken as the rare condition. That is, in general case, 00 input pattern will not appear. When an outsider chooses 

this input pattern, the trigger logic gets activated. From the columns 3rd and 5th of Table I, it is clear that for 

input pattern 00, the trigger (NOR gate) is activated and the trigger action goes through an XOR gate to activate 
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the payload logic. As a result of this, it is observable that the outcome of an AND gate is 1 when inputs are 00, 

which is not true for normal operation. 

 

 

 

Fig. 2.8: Combinationally triggered trojan in half-adder 

A half adder of Fig. 2.8 is embedded with a Hardware Trojan (HT) as reported. In original half adder circuit, 

the outputs (carry and sum) for the 4 input sequences are 00, 01, 10, 11 respectively. Here, 11 input patterns 

is considered as the extreme rare condition. That is, in general case, 11 input patterns will not appear. But if 

forcefully the malicious adversary generates the 11-input sequence, then the trigger logic becomes active and 

the original outcome (Carry = 1, Sum = 0) is altered, say 11. Here, the XNOR gate works as the trigger logic 

and the multiplexer acts as the payload logic. When the rare input 11 is passed, then the output of the XNOR 

gate selects input 1 of the multiplexers - that is, B = 1. The generated outcome is dissimilar with the normal 

output. This class of hardware trojan is referred to as the HT with explicit behaviour. On the other hand, for 

the other input combinations, the Sum outputs (of Fig. 2) are same as that of trojan free circuit. For such input 

patterns, it is not possible to expose the existence of trigger and payload circuit. In that cases, the HT shows 

implicit malicious behaviour. 

 

 

 

Fig. 2.9: Two-input based combinationally triggered trojan TABLE II: Truth table of circuit shown in 

Fig.2.9 

Fig. 2.9 shows the trigger and payload logic with the original logic circuit (OR gate). Here, any one of the 00, 

01, 10 and 11 input patterns can be taken as the rare pattern. The select line S = 1 denotes that the output 

Omod is B.O and S = 0, sets Omod = A.O. O is the output of original circuit. The truth table for the circuit 

with HT is shown in Table II. Column 5 notes the values of Omod when S = 0 and S = 1. 
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Fig. 2.10: Three-input based combinatioanlly triggered trojan TABLE III: Truth table of circuit shown in 

Fig. 2.10 

In Fig. 2.10, 010 input pattern is the rare condition. The trigger logic is designed in such a way that for this 

particular pattern (010), the original output is flipped (as in row 3, of Table IV). That is, its detection probability 

is  1/8 (best possible case) 

2.8 Delay Trojan 

Trojan circuit is created by introducing some delay in 256:1 MUX. In this trojan implementation, until count 

252 we will get the same 256:1 mux output, yet, after check 252 we will get defective output. Since a trojan 

block is added to the 256:1 mux block. The variations between the brilliant circuit and trojan circuit have been 

investigated. 

 

Fig.2.11 Delay Trojan Inserted in 256:1 MUX 

Fundamentals of Delay-Based HT Detection Methods. This section introduces the three fundamental technical 

domains that need to be considered by path delay-based methodologies: 1) the test vector generation strategy, 

2) the technique employed for measuring path delays, and 3) the statistical detection method for distinguishing 

between process variation effects and HT anomalies. A commercially viable HT detection method must address 

each of these in a cost-effective manner. We investigate the challenges associated with each of these domains 

and describe proposed solutions in this section. Many of the methods surveyed in Section 5 address only a 

subset of these technical domains and therefore must be combined with other techniques to be fully operational 

in practice. 

Hardware Trojan (HT) detection method is presented that is based on measuring and detecting small systematic 

changes in path delays introduced by capacitive loading effects or series inserted gates of HTs. The path delays 

are measured using a high resolution on-chip embedded test structure called a time-to-digital converter (TDC) 
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that provides approx. 25 ps of timing resolution. A calibration method for the TDC as well as a chip-averaging 

technique are demonstrated to nearly eliminate chip-to-chip and within-die process variation effects on the 

measured path delays across chips.  
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CHAPTER 3 

PHYSICALLY UNCLONABLE FUNCTIONS 

3.1 Introduction  

Mobile and embedded devices are becoming ubiquitous, interconnected platforms for everyday tasks. Many 

such tasks require the mobile device to securely authenticate and be authenticated by another party and securely 

handle private information. Physical unclonable functions (PUFs) are a promising innovative primitive that are 

used for authentication and secret key storage. PUF, is a physical object that for a given input and conditions 

(challenge), provides a physically defined "digital fingerprint" output (response) that serves as a unique 

identifier, most often for a semiconductor device. Today, PUFs are usually implemented in integrated circuits 

and are typically used in applications with high security requirements, more specifically cryptography. 

3.1.1 Why Physical Unclonable Function (PUF)? 

20 years ago, digital security was implemented only in dedicated electronic devices such as banking cards or 

payment terminals. Today everyone connects to its bank using a secure internet connection signalled by 

"https://" and we all expect that the information we manipulate with our smartphone is protected. Cryptographic 

techniques such as encryption or digital signature have been deployed to meet these requirements. As a 

consequence, a growing number of ASICs, microcontrollers and SoCs embed hardware cryptographic 

accelerators or software cryptographic libraries. The emergence of the Internet of Things (IoT) will call for an 

even faster adoption. We now can talk about cryptography pervasion. 

Such pervasion has been made possible because in modern cryptography algorithms are public and 

standardized. The immediate consequence of algorithms being publicly known is that keys become the most 

valuable assets, hence they must be strongly protected. 

Historically, the first Integrated Circuits (IC) designed to strongly protect keys were the smartcard ones. With 

the growing need for digital security, cryptography has been implemented in more and more ICs such as generic 

microcontrollers but the protection of keys is always a challenge. The main drawback of the obfuscation 

methods is that they also require highly specialized know how, mastered by only a few IC designers. Such 

solutions are not available of the shelves and are thus inapplicable in many cases. We will see that Physical 

Unclonable Functions (PUF) delivered as IPs enable the highest levels of security even for non-security 

experts. A fundamental difference between the traditional techniques and PUFs is that PUFs are, by nature, 

immune to reverse engineering techniques. 

PUFs implement challenge–response authentication. The applied stimulus is called the challenge, and the 

reaction of the PUF is called the response. A specific challenge and its corresponding response together form 

a challenge–response pair. 

3.2 Physically Unclonable Function 

In general, the function which cannot be copied or regenerated is called as unclonable function. So, attacker 

cannot produce copy of the device even with physical access. PUFs can produce various responses for various 

challenges at various times.  A PUF is based on the idea that even though the mask and manufacturing process 

is the same among different ICs, each IC is actually slightly different due to normal manufacturing variability. 

Physical unclonable functions (PUFs) are increasingly used for authentication and identification applications 

as well as the cryptographic key generation. An important feature of a PUF is the reliance on minute random 

variations in the fabricated hardware to derive a trusted random key. The characteristics of a PUF are to be 

robust (stable over time), unique (so no two PUFs are the same), easy to evaluate (to be feasibly implemented), 
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difficult to replicate (so the PUF cannot be copied) and very difficult or impossible to predict (so the responses 

cannot be guessed).  

 

Fig 3.1 Cycle of Challenge and response 

3.2.1 Principle used in PUF 

A turnkey solution for implementing secure storage while providing a higher level of protection than traditional 

techniques - which involves custom design - may sound like the security Graal. We will see that robust and 

easy to integrate PUF is now a reality. 

 

Fig 3.2 Block diagram of PUF Construction 

PUFs rely on minuscule manufacturing variations. The manufacturing variations result in devices mismatch. 

The idea is that two (or more) devices that are identical by design will actually have different electrical 

characteristics. The difference in the electrical characteristics is unpredictable and cannot be estimated through 

observation, neither optical, nor SEM. 

 

Figure 3.3 Schematics and layout views of a transistor pair as a PUF element 
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In the above schematic, although the two transistors A and B are identical by design, they always have in 

practice slightly different physical characteristics. Parameters such as threshold voltage (VT), drain-source 

current (IDS) or drain-source resistance (RDSON) are different. Designers may choose different parameters to 

build their PUF. In order to stay generic in this paper we will refer to "parameter" PA and "parameter" PB, 

keeping in mind that it could be any transistor parameter or a combination of them. 

As transistors A and B are identical by design, it is impossible neither by simulation nor reverse engineering 

to predict for each structure whether we will have PA > PB or PA < PB. If we arbitrarily decide that PA > PB 

generates a “0” and PA < PB a “1”, it is then impossible to guess whether the pair will generate a “0” or “1” 

when sensed. By repeating our structure N times we can generate an unpredictable stream of N bits. We have 

just designed a Physical Unclonable Function. 

 

Fig 3.4 Multiple instances of the transistor pair create an un predictable bit stream 

3.3 Types of PUF 

PUFs are categorized as follows: 

 

Fig 3.5 Types of PUF 

3.3.1 Based on fabrication: 

a) Silicon PUFs: These types of PUFs are interfaced with other ICs and are fabricated on the same die as part 

of the circuit. 

b) Non-Silicon PUFs: PUFs that are not classified as silicon PUFs are referred as non-silicon PUFs. They are 

fabricated in silicon systems but require special fabrication techniques which are not part of generic CMOS 

fabrication technology. 

Types of silicon and non-silicon PUFs 
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Physical gradation: 

● PUF on the optical elements- 

Any PUF in which the reaction of the system is based on any optical phenomenon called optical. It is generally 

used non-uniform transparency object (like reflective bubbles in the example above). 

● PUF on integrated microcircuits- 

Despite the fact that the microcircuits are made by the same manufacturing process, each of them is unique 

enough to allow PUF work correctly. It can be used in information security systems as a unique identifier of 

the device. Integrated microcircuit is covered with a protective substance with dielectric inclusions. These 

inclusions have random size and shape. 

● PUF on field-effect transistors- 

The basis of such PUFs is delay of the signal passing through it at unpredictable times, depending on the 

physical properties of the material of the transistor. The system response to a request. That reaction is unique 

to this device. 

● PUF on magnetic elements- 

Practical application - unique identifier of the magnetic stripe of a credit card. Magnetic strip also have a 

random size and shape. Unclonability based on the physical imperfection of the manufacturing process. 

Operation gradation: 

● Arbiter-based PUF- 

Arbiter-based physical unclonable function is a type of delay-based PUF. The main idea is to introduce race 

condition between two digital paths. Both paths end in an arbiter element of a chip, which determines which 

of paths was faster than another and then outputs a corresponding binary value. 

● Ring Oscillator PUF- 

Physical unclonable functions based on ring oscillators also use uncontrollable process delay variations of 

digital components as a source of randomness. Frequencies of ring oscillator outputs differ and that effect is 

used to form binary response. 

● Glitch-based PUF-  

This type PUFs base on combinatorial logic circuit behavior glitches. Perfectly, combinatorial circuit has no 

internal state, meaning that steady-state output is completely determined by its input signals. However, when 

logical input value changes, it takes some time for output to assume steady-state value. Glitch occurrence is 

influenced by different logical circuit delays differences from the inputs to an output signal. 

● SRAM PUF- 

Static Random-Access Memory (SRAM) physical unclonable function operation principle uses state 

randomness of some SRAM cells right after it is powered up. 

● Butterfly PUF- 

Butterfly physical unclonable function imitates SRAM cell behavior, forming a bistable circuit. Circuit is 

forced to an unstable state, then it goes into one of the two stable states, which depends on random delay 

difference between two cross-coupling data latches and input signal line. 

3.3.2 Based on security: 
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a) Strong PUFs- Strong PUFs are typically used for authentication. Strong PUFs, on the other hand, scale in a 

manner as to support a much larger set of CRPs. The number of these pairs is so large, in fact, that even if an 

attacker has access to the PUF they cannot feasibly record them all. If in the manufacturing stage a sample of 

these CRPs is randomly taken, the chances that the attacker also recorded the response to the same challenge 

can be negligible. This results in a system where even if the attacker had access to the PUF at a certain point, 

only the user with physical access to the PUF at the time of the challenge can give the correct response and be 

authenticated. 

b) weak PUFs-    Weak PUFs are used for key storage. Weak PUFs support a relatively small number of CRPs, 

typically as a consequence of a low-order rate of scaling. This means that the full set of these pairs can be read 

from the device should an attacker gain physical access to the PUF for any given time. While it would not be 

possible to copy the physical PUF itself, with knowledge of the PUF's 

The strength of the PUF depends on the number of challenge response pairs (CRPs) that can be generated from 

a single device. This, in turn, typically corresponds to how the number of CRPs increases with the increasing 

device size. This rate of scaling tends to act as the metric that determines the strength of a PUF. 

3.4 Butterfly PUF: 

A cross-coupled circuit is a basic building block used in all types of storage elements in electronic circuits 

such as latches, flip-flops and SRAM memories. A cross-coupled circuit is constructed such that it provides a 

positive-feedback loop to store the required bit value within the loop. An example of such a circuit is a 

simple latch built using two cross-coupled inverters as shown in Figure 3.6. 

                              

             Figure 3.6. Cross coupled inverter                            Figure 3.7. cross coupled inverter stable states 

 

Notice that such cross-coupled circuits have two different stable operating points (to store the bit value) 

and an unstable operating point as shown in Figure 3.7. The circuit can be easily driven from the unstable 

state to a stable state by an external signal on the input or due to slight differences in the elements used to 

build the circuit (here inverters). We use this fact to build a PUF where the circuit is initially at the unstable 

operating point and left to attain one of the two stable operating points without any external excitation. We 

find that with high probability the circuit goes more often to one of   the stable states. This behavior is due 

to small differences in the wire delays and cross-coupled element’s (here inverter) voltage transfer 

characteristics. It is important to note that these circuits are constructed as symmetrically as possible and all 

variations are due to randomness in the circuit which is beyond the control of the designer. Different cross-

coupled devices can be built using different elements like NOR gates or NAND gates. 

The concept of the Butterfly PUF (BPUF) is based on the idea of creating structures within the FPGA 

matrix which behave similarly to a SRAM cell during the startup phase. A BPUF cell is a cross-coupled 

circuit which can be brought to a floating/unstable state before allowing it to settle to one of the two stable 

states that are possible. Implementing a cross- coupled element using combinational logic is not 
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straightforward due to the inability to create combinational loops. To overcome this problem, we simulate 

a cross-coupled combinational loop using latches. We create a cross-coupled structure using latches. This 

allows for an unstable state set by an excite signal, which then settles down to one of two possible stable 

states after some time. 

 

Fig3.8: Butterfly PUF 

 

The structure of the BPUF cell is as shown in Figure 3.8 constructed as symmetrically as possible by manual 

routing of the signal wires. It consists of two latches, each with a preset (PRE) signal (which turns output Q 
to 1 on high) and a clear (CLR) signal (which turns output Q to 0 on high). The data D is transferred to the 

output Q when the CLK is high. In the construction, the PRE of Latch 1 and CLR of Latch 2 are always set to 

low.  The excite signal     is connected to CLR of Latch 1 and PRE of Latch 2. The outputs of the latch are 

cross-coupled. We set CLK in both latches to always high, effectively simulating a combinational loop. To 

start the PUF operation, the excite signal is set to high. This brings the BPUF circuit to an unstable operating 

point (as both latches have opposite signals on their inputs and outputs). After a few clocks cycles the excite 

signal is set to low. This starts the process of the PUF circuit to attain either one of the two possible stable 

states, 0 or 1, on the out signal. The stable state depends on the slight differences in the delays of the 

connecting wires which are designed using symmetrical path. 

3.5 Ring oscillator PUF 

One of the most common types of Physical Unclonable Functions (PUFs) is the ring oscillator PUF (RO-

PUF), in which the output bits are obtained by comparing the oscillation frequencies of different ring 

oscillators. Ring Oscillator PUFs (RO-PUF) were introduced in 2007 and exploit the differences between 

the delay characteristics of wires and transistors. The output bits of a ROPUF are determined by comparing 

the oscillation frequencies of ring oscillators. RO-PUFs have a high reliability and are easier to implement 

compared to previously proposed designs such as butterfly PUFs. Since 2007, many researches were 

conducted on RO-PUFs.  

Ring Oscillator PUFs (RO-PUFs) have a simple architecture made of two n-bit multiplexer, 2 counters,1 

comparator and n ring oscillators (ROs). Each ring oscillator contains an odd number of inverters connected 

in a loop; each ring oscillates with a unique frequency depending on the characteristics of each of its 

inverters, which variate unpredictably from cell to cell due to manufacturing variations, even within the 

same chip, and are impossible to imitate. If the frequencies at which the ring oscillators oscillate are too 

high, the counters may not be able to count oscillations; therefore, there is a minimal number of inverters in 

every ring oscillator necessary to ensure a suitable oscillating frequency. The two multiplexers select two 

ROs which are compared together (pair). The two counter blocks count the number of oscillations of each 

of the two ROs in a fixed time interval (comparison time). At the end of the interval, the outputs of the two 

counters are compared together. Depending on which of the two counters has the highest value, the output 

of the PUF is set to 0 or 1. The output of the PUF is set to 0 if the first ring oscillator in the pair is faster 

than the second (the value of the first counter is higher than that of the second),and to 1 if it is slower (the 

value of the first counter is lower than that of the second). If the two frequencies are very close to each 
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other, the output of the PUF may variate unpredictably from run to run. 

 

Fig3.9  conventional RO-PUF 

RO-PUF can support a high number of challenge/response pairs without impacting excessively the area of the 

PUF. It can also be used to implement a temperature-aware RO-PUF with a 100% hardware utilization. Since 

all the components of RO go through significant usage, it suffers from runtime power and temperature 

variations and aging. This makes the RO-PUF prone to generating erroneous output. 

3.6 Common metrics of the PUF: 

 

Common metrics of the PUFs are the following: 

1) Uniqueness: It is a measure of the average inter-chip. Hamming Distance THD of two strings of bits is 

simply the number of bits in which the strings differ. It quantifies how different is one chip from another. An 

ideal PUF has a uniqueness value of 50%. 

2) Reliability: It is a measure of how much reliable is the CRP under noise and environmental variations. For 

the given challenge, the PUF should give the same response under varying operating conditions. The ideal 

value for reliability is 100%. 

3) Randomness: It is a measure of balance between “0”s and “1”s in the response bits of the PUF and measures 

the randomness. The ideal value is 100% (i.e.., perfect balance). 

4) Correctness: It is a measure of correctness of the response under different operating conditions. The ideal 

value is 100%. 

5) Bit Aliasing: It is a measure of biasness of a particular response bit across several chips. The ideal value is 

50%. 

6) Uniformity: It is a measure of how random is the CRP. For a response to be random, the number of “0”s and 

“1”s in the response should occur with equal probability (i.e. 50%). 

7) Steadiness: The measure of biasness of a response bit for a given number of “0”s and “1”s over a total 

number of samples gives the steadiness. The ideal value is 100%.        

3.6.1 PUF Challenges 

As illustrated, implementing a series of multiple instances of our transistor pair, or any other device, is trivial. 

Thus, it might seem very easy to build a PUF based on this principle. Actually, it is not! 
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As said in the introduction, PUF is based on the minuscule variations in silicon manufacturing. In our example 

this translates into PA > PB or PA < PB. However, because the manufacturing variations are minuscule, so is 

the difference ΔP = PA - PB. Because ΔP is small, it has to be measured with high accuracy. If not, a "0" could 

easily flip to "1" or vice-versa and the PUF becomes unusable for key generation. Measurement accuracy is 

thus a major challenge. Even worse, ΔP is generally sensitive to aging, as well as temperature, process and 

power-supply variations. ΔP is by nature small but also randomly distributed, hence cells having the lowest ΔP 

have a tendency to flip when used at different temperatures. We can consider these cells as "weak" while those 

having higher ΔP as "strong", the latter being less sensitive to variations. Adding extra or redundant cells as 

this is done in memory designs is a possible path to replace the weak cells by strong ones. 

While implementing the PUF elements is relatively straightforward, getting stability over said parameters is a 

real challenge. There are several techniques to build stable PUFs: 

● Choose the parameters (VT, IDS, RDSON) so that there easily measurable with high-accuracy; 

● Redundancy: design more PUF elements than needed and eliminate the "weak" instances. Here again 

the number of weak cells need to be thoroughly estimated. Having not enough cells would create yield 

issues while adding too many redundant cells can make the PUF too large in terms of silicon area. Both 

would increase the actual die cost. 

● Error correction: assuming the percentage of unstable cells is low enough, implementing a proper error 

correction mechanism such as Hamming coding would "repair" the key. The limitation is that one needs 

to have a pretty strong estimate of the potential defective PUF units 

 

Fig3.10 Behaviour of "weak" and "strong" cells 

On top of the measurement accuracy, what makes a PUF solution value are indeed the cost of efficiency of the 

error correction or redundancy schemes. 

Reliability is essential but also as for other key generation processes, one expects for the PUF unpredictability 

and uniqueness. Unpredictability means that on a given die, even knowing the PUF response to a set of 

challenges, one cannot guess the response to the next challenge. Uniqueness is the capability for a given PUF 

design to generate a unique response for each die and for the same challenge F. 

 

3.7 Applications of PUF- 
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Fig 3.11 Applications of PUF 

 

● PUFs can be used in applications that require some sort of randomness during their operation. 

● PUFs seem to be an elegant solution in applications such as random number generators, Radio 

Frequency Identification (RFID) tags, secret key generation,and in device authentication where the 

required randomness property is obtained from process variation. PUFs have also been used in 

consumer devices for low-cost authentication purposes.  

● Private and Secret Keys Storage- 
The key storage is often the primary concern. The PUF generated key is used to build a secure vault within the 

on-chip non-volatile memory such as EEPROM, Flash or OTP. 

 

Figure 3.12 Implementing a highly secure key vault with a PUF 

● Software IP protection 

Some algorithms, such as those applied for medical diagnosis or vital signs measurement, are the results of 

years or research and development. Hence, they are extremely valuable assets deserving strong protection. PUF 

generated keys can protect these software IPs through encryption. 
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Fig 3.13 PUF based software IP protection 

● Device authentication 

One of the very first security requirements for connected devices is authentication, that is to say making sure 

the unit is genuine. The most secure way is to perform challenge – response authentication. In this scheme a 

random number – the challenge – is sent to the device to be authenticated and the said device signs the challenge 

with its private key. Here again, the private key must be strongly protected. 
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CHAPTER 4 

VERILOG HARDWARE DESCRIPTION LANGUAGE 

4.1 What is HDL?  

 Hardware description language (HDL) is a specialized computer language used to program electronic and 

digital logic circuits. The structure, operation and design of the circuits are programmable using HDL. HDL 

includes a textual description consisting of operators, expressions, statements, inputs and outputs. Instead of 

generating a computer executable file, the HDL compilers provide a gate map. The gate map obtained is then 

downloaded to the programming device to check the operations of the desired circuit. The language helps to 

describe any digital circuit in the form of structural, behavioural and gate level and it is found to be an excellent 

programming language for FPGAs and CPLDs. The three common HDLs are Verilog, VHDL, and SystemC.  

 4.2 Importance of HDLs  

 HDLs have many advantages compared to traditional schematic-based design.    

1. Designs can be described at a very abstract level by use of HDLs. Designers can write their RTL description 

without choosing a specific fabrication technology. Logic synthesis tools can automatically convert the design 

to any fabrication technology. If a new technology emerges, designers do not need to redesign their circuit. 

They simply input the RTL description to the logic synthesis tool and create a new gate-level net-list, using 

the new fabrication technology. The logic synthesis tool will optimize the circuit in area and timing for the 

new technology.   

2. By describing designs in HDLs, functional verification of the design can be done early in the design cycle. 

Since designers work at the RTL level, they can optimize and modify the RTL description until it meets the 

desired functionality. Most design bugs are eliminated at this point. This cuts down design cycle time 

significantly because the probability of hitting a functional bug at a later time in the gate-level netlist or 

physical layout is minimized.    

3. Designing with HDLs is analogous to computer programming. A textual description with comments is an 

easier way to develop and debug circuits. This also provides a concise representation of the design, compared 

to gate-level schematics. Gate-level schematics are almost incomprehensible for very complex designs.  

4.3 Introduction to Verilog HDL  

  Verilog HDL is one of the two most common Hardware Description Languages (HDL) used by  

integrated circuit (IC) designers. The other one is VHDL. HDL’s allows the design to be simulated earlier in 

the design cycle in order to correct errors or experiment with different architectures. Designs described in HDL 

are technology-independent, easy to design and debug, and are usually more readable than schematics, 

particularly for large circuits.   

Verilog can be used to describe designs at four levels of abstraction:  

  

(i) Algorithmic level (much like c code with if, case and loop statements).  

(ii) Register transfer level (RTL uses registers connected by Boolean equations).  

(iii) Gate level (interconnected AND, NOR etc.).  
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(iv)Switch level (the switches are MOS transistors inside gates).  

The language also defines constructs that can be used to control the input and output of simulation.  

   Verilog has a variety of constructs as part of it.  All are aimed at providing a functionally tested and a 

verified design description for the target FPGA or ASIC.  The language has a dual function – one fulfilling the 

need for a design description and the other fulfilling the need for verifying the design for functionality and   

timing constraints like propagation delay, critical path delay, slack, setup, and hold times.  

  Verilog as an HDL has been introduced here and its overall structure explained.  A widely used 

development tool for simulation and synthesis has been introduced; the brief procedural explanation provided 

suffices to try out the Examples and Exercises in the text.     

4.4 Module  

 Any Verilog program begins with a keyword– called a “module.”  A module is the name given to any system 

considering it as a black box with input and output terminals as shown in Figure 4.1.  The terminals of the 

module are referred to as ‘ports’. The ports attached to a module can be of three types:    

• input ports through which one gets entry into the module; they signify the input signal terminals of 

the module.    

• output ports through which one exits the module; these signify the output signal terminals of the 

module.   

• inout ports: These represent ports through which one gets entry into the module or exits the module; 

These are terminals through which signals are input to the module sometimes; at some other times 

signals are output from the module through these.   

 

Fig 4.1: Representation of a module as black box with its ports. 

4.5 Tokens of Verilog  

 The basic lexical conventions used by Verilog HDL are similar to those in the C programming language. 

Verilog contains a stream of tokens. Tokens can be comments, delimiters, numbers, strings, identifiers, and 

keywords.  

4.5.1 Case Sensitivity   

 Verilog is a case-sensitive language like C.  Thus sense, Sense, SENSE, sENse, etc., are all treated as different 

entities / quantities in Verilog.   

4.5.2 Keywords  

 The keywords define the language constructs.  A keyword signifies an activity to be carried out, initiated, or 

terminated.  As such, a programmer cannot use a keyword for any purpose other than that it is intended for.  
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All keywords in Verilog are in small letters and require to be used as such (since Verilog is a case-sensitive 

language). All keywords appear in the text in New Courier Bold-type letters.  

Examples: 

module <- signifies the beginning of a module definition.  

endmodule <- signifies the end of a module definition.  

begin<- signifies the beginning of a block of statements. 

end<- signifies the end of a block of statements.   

if <- signifies a conditional activity to be checked  

while<- signifies a conditional activity to be carried out.  

4.5.3 Operators  

 Operators are of three types: unary, binary, and ternary. Unary operators precede the operand. Binary operators 

appear between two operands. Ternary operators have two separate operators that separate three operands.   

Examples:  

 a = ~ b; // ~ is a unary operator. b is the operand   

a = b && c; // && is a binary operator. b and c are operands   

a = b ? c : d; // ?: is a ternary operator. b, c and d are operands  

4.5.4 Data Types  

There are two groups of types, "net data types" and "variable data types."  

  

An identifier of "net data type" means that it must be driven. The value changes when the driver changes 

value. These identifiers basically represent wires and are used to connect components.   

"net data types" are: wire, supply0, supply1, tri, triand, trior,tri0, tri1, wand, wor "net data types" can have 

strength modifiers: supply0, supply1,strong0, strong1, pull0, pull1, weak0, weak1,highz0, highz1, small, 

medium, large.  

Some "net data types" can take modifiers: signed, vectored, scalar.  

  

An identifier of "variable data type" means that it changes value upon assignment and holds its value until 

another assignment. This is a traditional programming language variable and is used in sequential statements.  

"Variable data types" are: integer, real, realtime, reg, time.  

  

integer is typically a 32-bit twos complement integer.  

  

real is typically a 64-bit IEEE floating point number.  

  

real time is of type real used for storing time as a floating-point value.   
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reg is by default a one-bit unsigned value.  

The reg variable data type may have a modifier signed, and may have may bits by using the vector modifier 

msb: lsb].  

  

  

Scalars and Vectors   

  Entities representing single bits — whether the bit is stored, changed, or transferred — are called  

“scalars.”  Often multiple lines carry signals in a cluster – like data bus, address bus, and so on.  Similarly, a 

group of regs stores a value, which may be assigned, changed, and handled together.  The collection here is 

treated as a “vector.”  Figure 4.2 illustrates the difference between a scalar and a vector.  wr and rd are two 

scalar nets connecting two circuit blocks circuit1 and circuit2. b is a 4-bit-wide vector net connecting the same 

two blocks.  [b0], [b1], [b2], and [b3] are the individual bits of vector b.  They are “part vectors.”   

 A vector reg or net is declared at the outset in a Verilog program and hence treated as such.  The range of a 

vector is specified by a set of 2 digits (or expressions evaluating to a digit) with a colon in between the two.  

The combination is enclosed [ within square brackets.   

 

Fig 4.2: Illustration of Scalars and Vectors 

Examples:   

wire [ 3:0] a;  /* a is a four bit vector of net type; the bits are designated as [ a3], [ a2], [ a1] and [ a0]. */  

reg [ 2:0] b;  /* b is a three bit vector of reg type; the bits are designated as [ b2], [ b1] and [ b0]. */   

reg [ 4:2] c;  /* c is a three bit vector of reg type; the bits are designated as [ c4], [ c3] and [ c2]. */   

wire [ -2:2] d ; /* d is a 5 bit vector with individual bits designated as [ d-2], [ d-1], [ d0], [ d1] and [ d2].  

*/   

Whenever a range is not specified for a net or a reg, the same is treated as a scalar – a single bit quantity.  In 

the range specification of a vector the most significant bit and the least significant bit can be assigned specific 

integer values.  These can also be expressions evaluating to integer constants – positive or negative. Normally 
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vectors – nets or regs – are treated as unsigned quantities.  They have to be specifically declared as “signed” 

if so desired.   

Examples:   

wire signed [ 4:0] num;  // num is a vector in the range -16 to +15.   

reg signed [ 3:0] num_1;  // num_1 is a vector in the range -8 to +7.    

4.5.5 Comments      

 Comments can be inserted in the code for readability and documentation. There are two ways to write 

comments. A one-line comment starts with "//". Verilog skips from that point to the end of line. A multiple-

line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be nested. However, one-

line comments can be embedded in multiple-line comments.    

 a = b && c; // This is a one-line comment    

/* This is a multiple line     comment */    

/* This is /* an illegal */ comment */    

/* This is //a legal comment */     

  

4.5.6 Number Specification      

There are two types of number specification in Verilog they are sized and unsized.     

Sized numbers      

  Sized numbers are represented as <size> '<base format> <number>.      

<size> is written only in decimal and specifies the number of bits in the number. Legal base formats are decimal 

('d or 'D), hexadecimal ('h or 'H), binary ('b or 'B) and octal ('o or 'O). The number is specified as consecutive 

digits from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Only a subset of these digits is legal for a particular base. 

Uppercase letters are legal for number specification.     

4'b1111 // This is a 4-bit   binary number 

12'habc // This is a 12-bit hexadecimal number   

16'd255 // This is a 16-bit decimal number.   

Un-sized numbers      

 Numbers that are specified without a <base format> specification are decimal numbers by default. Numbers 

that are written without a <size> specification have a default number of bits that is simulator- and machine-

specific (must be at least 32).   

  23456 // This is a 32-bit   decimal number by default  

 'hc3 // This is a 32-bit   hexadecimal number  
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 'o21 // This is a 32-bit   octal number     

X or Z values      

 Verilog has two symbols for unknown and high impedance values. These values are very important for 

modelling real circuits. An unknown value is denoted by an x. A high impedance value is denoted by z.    

12'h13x // This is a 12-bit hex number; 4 least significant bits unknown  

 6'hx // This is a 6-bit hex number  

 32'bz // This is a 32-bit high impedance number      

 An X or Z sets four bits for a number in the hexadecimal base, three bits for a number in the octal base, and 

one bit for a number in the binary base. If the most significant bit of a number is 0, X, or Z, the number is 

automatically extended to fill the most significant bits, respectively, with 0, X, or Z. This makes it easy to 

assign X or Z to whole vector. If the most significant digit is 1, then it is also zero extended.    

 Negative numbers      

 Negative numbers can be specified by putting a minus sign before the size for a constant number. Size 

constants are always positive. It is illegal to have a minus sign between <base format> and <number>. An 

optional signed specifier can be added for signed arithmetic.     

-6'd3 // 8-bit   negative number stored as 2's complement of 3   

-6'sd3 // Used for performing signed integer math  

 4'd-2 // Illegal specification     

  

4.6 Module Declaration:  

 Modules are the building blocks of Verilog designs. A module can be an element or a collection of lower-

level design blocks. A module provides the necessary functionality to the higher-level block through its port 

interface (inputs and outputs), but hides the internal implementation. Module interface refers, how module 

communicates with external world. This communication is possible through different ports such as input, 

output and bi-directional (inout) ports. Design functionality is implemented inside module, after port 

declaration. In Verilog, a module is declared by the keyword module. A corresponding keyword endmodule 

must appear at the end of the module definition. Each module must have a module_name, which is the identifier 

for the module, and a port list, which describes the input and output terminals of the module. Design 

functionality is implemented inside module, after port declaration. The design functionality implementation 

part is represented as “body” here.  

 

Syntax  

module  

module name(port-list);  

input [msb:lsb] input_port_list;  
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output [msb:lsb] output_port_list;  

inout [msb:lsb] inout_port_list;  

………statements…… endmodule  

NOTE: All module declarations must begin with the module (or macro-module) keyword and end with the 

endmodule keyword. After the module declaration, an identifier is required. A ports list is an option. After 

that, ports declaration is given with declarations of the direction of ports and the optionally type. The body of 

module can be any of the following:  

• Any declaration including parameter, function, task, event or any variable declaration.  

• Continuous assignment.  

• Gate, UDP or module instantiation.  

• Specify block.  

• Initial block  

• Always block.  

If there is no instantiation inside the module, it will be treated as a top-level module.  

Example: 

module module_1(a,b,c) ;  

parameter size = 3 ;  

input size : 0] a, b ;  

output size : 0] c;  

assign c = a &b;   

endmodule  

module top; 

reg data, clock;  

wire q_out, net_1;  

dff inst_1 (.d(data), .q(net_1), .clk(clock));  

dff inst_2 (.clk(clock), .d(net_1), .q(q_out)); 

 endmodule  

 In the top module there are two instantiations of the 'dff' module. In both cases port connections are done by 

name, so the port order is insignificant. The first port is input port 'd', the second is output 'q' and the last is the 

clock in the 'inst_1'. In the dff module the order of ports is different than either of the two instantiations.  

Example 2  

module dff (clk, d, q); 

input clk, d; output q; 

reg q;  

always @(posedge clk) q = d;  

endmodule  

 

module top; 

reg data, clock; 

wire q_out, net_1;  

dff inst_1 (clock, data, net_1);  

dff inst_2 (clock, net_1, q_out); 
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endmodule  

Example 3    

dff inst_1 (clock, , net_1);  

Second port is unconnected and has the value Z because it is of the net type. 

Example 4  

module my_module (a, b, c);  

input a, b; 

output c; assign 

c = a & b ; 

endmodule  

 

module top (a, b, c) ; 

input [3:0] a, b; 

output[3:0] c;  

  my_module inst 3:0] (a, b, c);  

endmodule  

4.7 Flowchart of Verilog Code  

                            

                  Fig 4.3: Flowchart representation of Verilog Code 

  

Verilog has four levels of Modeling:  
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1) The switch level Modeling.  

2) Gate-level Modeling.  

3) The Data-Flow level.  

       4)  The Behavioural Procedure  

 

1. Switch level Modeling: A circuit is defined by explicitly showing how to construct it using transistors 

like pmos and nmos,  pre-defined modules.  

Example:  

   module inverter (out, in);  

                          output out; 

input in;  

supply0 gnd; 

supply1 vdd; 

nmosx1 (out, in,gnd); 

pmosx2(out, in, vdd); 

endmodule  

2. Gate level modeling: A circuit is defined by explicitly showing how to correct it using logic gates, 

predefined modules, and the connections between them. In this first we think of our circuit as a box or 

module which is encapsulated from its outer environment, in such a way that its only communication with 

the outer environment is through input and output ports. We then set out to describe the structure within 

the module by explicitly describing its gates and sub modules, and how they connect with one another as 

well as to the module ports. In other words, structural modeling is used to draw a schematic diagram for 

the circuit. As an example, consider the fulladder below.  

Example:  

module fulladder (a, b, sum, C out);  

Input a, b;  

output sum, C out;  

xor x1(a, b, y); 

xor x2(a, b, y);  

endmodule  

3. Data-flow modeling: Dataflow modelling uses Boolean expressions and operators. In this we use assign 

statement.  

Example :  

module fulladder (a, b, sum, C out); 

input a, b;  

output sum, C out; 

assign sum=a^b; 

assign Cout =a^b; 

endmodule  
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4. Behavioural modeling: It is higher level of modeling where behaviour of logic is modelled. Verilog 

behavioural code is inside procedure blocks, but there is an exception: some behavioural code also exist 

outside procedure blocks.  

There are two types of procedural blocks in Verilog :  

Initial: initial blocks execute only once at time zero(start execution at time zero)  

Always: always blocks loop to execute over and over again; in other words, as the name suggests, it executes 

always.  

An always statement executes repeatedly, it starts and its execution at 0ns  

Syntax:  

always@ (sensitivitylist)  

begin  

--Procedural statements-- end  

Example:  

module fulladder (a, b, clk,sum); 

input a, b, clk;  

output sum;  

always@ (posedgeclk) 

begin  

sum =a+b; 

end 

endmodule  

4.8 Software Tools Used  

Xilinx Vivado 2019.2   

Few important terminologies are tasks and functions. They are described below.  

Tasks:  

Tasks are used in all programming languages, generally known as procedures or subroutines. The lines of code 

are enclosed in task....end task brackets. Data is passed to the task, the processing done, and the result returned. 

They have to be specifically called, with data ins and outs, rather than just wired in to the general netlist. 

Included in the main body of code, they can be called many times, reducing code repetition.  

• tasks are defined in the module in which they are used. It is possible to define a task in a separate file 

and use the compile directive 'include to include the task in the file which instantiates the task.  

• tasks can include timing delays, like posedge, negedge, # delay and wait.  

• tasks can have any number of inputs and outputs.  

• The variables declared within the task are local to that task. The order of declaration within the task 

defines how the variables passed to the task by the caller are used.  



  

40 

 

• tasks can take, drive and source global variables, when no local variables are used. When local variables 

are used, basically output is assigned only at the end of task execution.  

• tasks can call another task or function.  

• tasks can be used for modeling both combinational and sequential logic.  

• A task must be specifically called with a statement; it cannot be used within an expression as a function 

can.  

Functions:    

A Verilog HDL function is the same as a task, with very little differences, like function cannot drive more than 

one output, cannot contain delays.  

• functions are defined in the module in which they are used. It is possible to define functions in separate 

files and use compile directive 'include to include the function in the file which instantiates the task.  

• functions cannot include timing delays, like posedge, negedge, # delay, which means that functions 

should be executed in "zero" time delay.  

• functions can have any number of inputs but only one output.  

• The variables declared within the function are local to that function. The order of declaration within 

the function defines how the variables passed to the function by the caller are used.  

• functions can take, drive, and source global variables, when no local variables are used. When local 

variables are used, basically output is assigned only at the end of function execution.  

• functions can be used for modeling combinational logic.  

• functions can call other functions, but cannot call tasks.  

Steps to be followed to Create a Project in Xilinx Vivado 2019.2  

• First open Xilinx Vivado 2019.2 then the Fig 4.4 appears on the screen.  

• Click on Create Project to create a new project.  
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Fig 4.4 Opening window of Xilinx 2019.2 

• Now a new window appears as shown in Fig 4.5  

 

Fig:4.5: Create project window 

• Click on NEXT to move further fig 4.6 shows the name and location of the project. 

 

Fig 4.6: Name and Location entry for project 

• Select Type of the project fig 4.7 shows type of project.  



  

42 

 

 

Fig 4.7 Selecting type of the project 

• Now select specifications for the required project. Fig 4.8 shows Specifications of the project.  

  

 

Fig 4.8.: Specifications window for the project 

• Fig 4.9 shows summary of the project.  
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Fig 4.9: Summary window of the project 

• Sources can be added upon clicking Add Sources. Fig 4.10 appears after following the above steps.  

 

Fig 4.10: Add sources 

• Sources are added to the project by clicking on add or create design and a Verilog file name.  
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Fig4.11: Creating source 

• Create Verilog files to write code. Fig 4.8.9 and 4.8.10 deals with creating  a Verilog file for writing the 

code.  
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Fig 4.12: Creating file window 

 

Fig 4.13: Filename creation window 

•Sources will be shown in a new window as in fig 4.14 

  

 

Fig 4.14: Sources window 

• Simulation, Synthesis and implementation can be done by using the side bar options as shown in fig 4.15 
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                               Fig 4.15 Sidebar for performing required process.  
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                                                CHAPTER 5 

HARDWARE TROJAN INSERTION AND DETECTION 

5.1 Hardware Trojan  

 A hardware trojan can be described as a malicious alteration or inclusion to an integrated circuit (IC) that will 

either alter its intended function or cause it to perform an additional malicious function. These malicious 

inclusions or alterations are generally programmed to activate only under a specific set of circumstances 

created by an attacker and are extremely hard to detect when in their dormant state. As technology advances, 

so does the demand for IC boards leaving many technology companies without the resources to produce secure 

enough ICs to meet current demands. This has pushed companies into the ‘fabless’ trend prevalent in today’s 

semi-conductor industry, where companies are no longer attempting to produce the goods in their own 

factories, but instead are outsourcing the process to cheaper factories abroad. This growth brings with it a 

significant rise in the level of threat posed by hardware trojans, a threat that directly affects all companies 

concerned with products that utilise ICs. This encompasses many different industries, including the military 

and telecommunications companies, and can potentially affect billions of devices from mobile phones and 

computers to military grade aviation and detection devices, particularly at a time when wireless devices are 

being introduced as links in critical infrastructure, compounding trust and security issues even further.   

5.2 Algorithm for Trojan Detection  

The following steps are to be followed for detecting an hardware trojan.  

1. Get the circuit under test  

2. Retrieve the path delays and other parameters  

3. i=1  

4. Retrieve ith path  

5. Give test vector to circuit under test  

6. Measure the path delay and other parameters  

7. If delay equal to golden circuit’s delay then go to ‘a’ else go to ‘b’.                 

  a.  i=i+1         

   if  i=number of available paths then go to ‘f1’ else go to step-4.  

      f1.  Circuit is trojan free.  

      b. Circuit is affected.  

5.3. Side Channel Analysis  

 Logic-based testing may not be effective for activating large combinational or sequential Trojans due to the 

extremely large number of possible trigger nodes. Side-channel analysis involves the measurement and 

analysis of information obtained from an IC’s side-channels. The information could be based on timing, power 
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consumption, or electromagnetic radiation. Side-channel analysis has been proposed previously as a powerful 

technique to detect malicious insertions in an IC. In this section, we specifically concentrate on side-channel 

information obtained from power consumption in the device. Static power contains comprehensive 

information regarding all the gates in the chip (including malicious gates/ transistors). Trojans causing physical 

damage by creating electrical conflicts can also be detected using side-channel analysis since these Trojans 

result in a large current flow through the power supply. A simple design file can be loaded that configures I/O 

ports as inputs and then measures the supply current. If these Trojans simultaneously try to configure the port 

as an output, then a very large current can be detected by current sensors in the device, indicating a malicious 

modification. Since on-chip current sensors may also be tampered in the foundry during production, they must 

be tested thoroughly to identify any tampering. An alternative and secure strategy would be to use an on-board 

current sensor to detect short-circuit conditions. Trojans which do not cause physical damage and only cause 

logical malfunction may be extremely difficult to detect by analysing static power. This is due to the difficulty 

in isolating the contribution of the malicious insertions from the measured power traces in ICs containing many 

millions of transistors. On the other hand, transient or dynamic power can be controlled by applying input 

vectors to reveal information about a few gates which are switching at any given time. The advantage of this 

type of analysis is that, unlike logic-based testing, a Trojan does not have to become active for detection; it 

merely needs to cause switching in the Trojan to consume dynamic power. For the IP-independent Trojans 

presented in Section 3, transient power analysis can be an effective detection method. For example, a counter-

based Trojan inserted in the clock manager module can be detected by applying a clock signal to the FPGA 

and applying constant inputs to prevent logic blocks from switching. An extraneous counter or any sequential 

circuit will consume transient power as it transitions from one state to another. This contribution to dynamic 

power can be identified and associated with malicious insertions after accounting for process noise and clock 

coupling power.  

5.4 Trojan Implementation : 

Among those 4 types of trojans, we have implemented hardware trojan procedure in three ways: 

(1) Trojan by short circuiting input line: Trojan is inserted/created by short circuiting the inputs of the IC. In 

this way, that for certain test vectors/inputs the output will be faulty. At that point the circuit is broke down 

and contrasted and the golden circuit to distinguish the trojan. 

(2) Combinational trojan: This trojan is combinational sort of trojan. In this, we will interface the 

combinational circuit as the hardware trojan alongside the Trusted IC's unique circuit i.e.,256:1 mux. 

(3) Delay type of trojan: Trojan circuit is created by introducing some delay in 256:1 MUX. In this trojan 

implementation, until count 252 we will get the same 256:1 mux output, yet, after check 252 we will get 

defective output. Since a trojan block is added to the 256:1 mux block. The variations between the brilliant 

circuit and trojan circuit have been investigated. 

5.5 Simulation Results 

5.5.1 Trojan Free Circuit 

Here A 256:1 MUX is taken as the trojan free circuit and then the circuit is implemented by writing a VHDL 

code in Vivado Xilinx 2019. The algorithm stated earlier in chapter 4 should be followed in achieving this.  

Schematic of the Trojan free circuit i.e.,256:1 MUX shown in fig 5.1 is obtained after synthesis is done. The 

LUTs and other components can be observed in the schematic shown in fig 5.1.   
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Fig 5.1: Schematic diagram for the Trojan Free Circuit 

The floor planning for the Trojan free circuit i.e.,256:1 MUX is shown in fig 5.2  

 

Fig 5.2: Floor planning for trojan free circuit 

The simulation results in fig 5.3 shows the normal functioning circuit which is trojan free circuit.  
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Fig 5.3 Simulation Results of trojan free circuit 

In this Trojan free output, we are having 8 selection lines i.e. [0:7]. Here we have selected selection line as 

00000111 i.e., 7 unsigned decimal, by giving the input as 255 decimal. So the 7th bit of the input is checked 

because selection lines input is 7. Hence output is HIGH since 7th bit is HIGH. 

5.5.2 Delay Type of Trojan Inserted Circuit 

       A 256:1 MUX is taken as the trojan free circuit. The following trojan free circuit is taken and without 

changing the propagation delay the Delay Trojan was inserted in lowest path delay thereby we can detect the 

Trojan using path delays then the circuit is implemented by writing a VHDL code in Vivado Xilinx 2019. The 

algorithm stated earlier in chapter 4 should be followed in achieving this.  

Here is how a Delay Trojan is inserted in Trojan free circuit i.e.,256:1 MUX shown in fig 5.1 is shown as in 

fig 5.4 

1. The implementation of 64:1 multiplexer using 8:1 mux has been done. 

2. The implementation of 256:1 multiplexer using 64:1 mux and 4:1 mux has been done. 

3. We have analyzed the variations in golden circuit and trojan circuit. Trojan circuit is created by 

inserting the delay in 256 MUX. In this trojan implementation, until count < 252 we will get the same 

256_1 mux output, but after count >= 252 we will get faulty output. Because a trojan block is added 

to the 256_1 mux block. 
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Fig 5.4 : Delay Trojan inserted circuit i.e., Circuit Under Test 

The simulation results in fig 5.5 shows the normal functioning circuit which is trojan free circuit.  

In this Trojan output, we are having 8 selection lines i.e. [0:7]. Here we have selected selection line as 

00000111 i.e., 7 unsigned decimal, by giving the input as 255 decimal. But while comparing to trojan free 

output here output should be HIGH actually but the output is not HIGH due to the trojan circuit is added to it. 

Hence, we get the faulty output. Due to the reason that a net variable cannot be given non-net variable there 

had been some problems in the writing the code and synthesizing the code. So since the circuit cannot be 

synthesized the schematic diagram and the floor planning of the circuit cannot be obtained. So we had done 

another type of hardware trojan insertion which is Combinational type of Hardware Trojan. 

 

 

Fig 5.5 Simulation Results of trojan free circuit 

5.5.3 Combinational Trojan Inserted Circuit  

      A 256:1 MUX is taken as the trojan free circuit. The following trojan free circuit is taken and without 

changing the propagation delay the Delay Trojan was inserted in lowest path delay thereby we can detect the 

Trojan using path delays then the circuit is implemented by writing a VHDL code in Vivado Xilinx 2019. The 

algorithm stated earlier in chapter 4 should be followed in achieving this. 

Schematic of the Combinational Trojan inserted circuit shown in fig 5.6 is obtained after synthesis is done. 

The LUTs and other components can be observed in the schematic shown in fig 5.6.   
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Fig 5.6: Schematic diagram for the Combinational Trojan Inserted Circuit 

The floor planning for the the Combinational Trojan Inserted Circuit is shown in fig 5.7 

 

Fig 5.7: Floor planning for the Combinational Trojan Inserted Circuit 
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Fig 5.8: Simulation Results of trojan free circuit 

The simulation results in fig 5.8 shows the normal functioning circuit which is trojan free circuit.  

Here we had taken the selection line inputs sel_mux3[0], sel_mux3[1], these lines are given to the input of 

AND gate whose output is given to the final output of the IC. So, if the actual output of the 256:1 MUX and 

the output of the AND gate are equal then there is no contention but if the output of the AND gate and the 

256:1 MUX are equal then there occurs a contention. This contention can also be resolved using wand or wor 

logic. Hence for some test vectors the output will be faulty which results in the IC which cannot be trusted i.e., 

trojan inserted circuit. 

Table IV: Parameters comparison of Trojan Free and Trojan Effected Circuit  

 

 

 

 

 

 

 

 

 

 

 

 

Trojan Free Circuit Trojan Effected Circuit 

LUTs utilized are 68 

LUTS AS LOGIC: 68 

LUT6 : 66 

LUT2 : 1 

LUT3 :1 

LUTs utilized are: 70 

LUTs AS LOGIC: 70 

LUT 6 : 68 

LUT 2 : 1 

LUT 3 :1 

Slice Registers utilized are 45 Slice Registers utilized are 45 

Registers as flip-flops are 40 Registers as flip-flops are 40 

BUFGCTRL are 15 BUFGCTRL are 20 

Total Onchip Power: 2.939 W Total Onchip Power: 3.098W 

 

Junction Temperature: 38.2 Junction Temperature: 39.1 

F7 MUXES : 34 

F8 MUXES :  17 

Bonded IOB :265 

F7 MUXES : 38 

F8 MUXES : 16 

Bonded IOB :267 
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From the table 5.1 we can observe the performance of both the trojan affected and trojan free circuits in the 

parameters like LUTs, Slice registers, IOBs, Registers as flip-flops, BUFGCTRL, Onchip temperature, F7, F8 

MUXes and Junction Temperature  

The components like LUTs, IOBs, Onchip temperature, F7 MUXes, Junction Temperature and BUFGCTRLs 

are increased in trojan inserted circuit.  

Few components like Slice Registers and Registers as flip flops remained same. From this observation we can 

extract that the number of memory elements utilized are same in both trojan free and trojan affected circuits.     

5.5.4 Butterfly PUF :  

A Butterfly PUF cell is a cross-coupled bistable circuit, as shown in fig 5.9 which can be brought to an unstable 

state before it settles to one of the two stable states that are possible. It is made of two flipflops whose outputs 

are cross-coupled. Forcing the excite signal high brings the system to unsteady state. When the excite signal is 

set low, after certain clock cycles BPUF arrives at any of the consistent states i.e., 1 or 0. The interfacing wires 

defers drives the output. As the attributes of the circuit relies upon inborn properties, so the output is 

unpredictable. The main property of this circuit to construct a BPUF is its unpredictable state of output.  

 

Fig 5.9 : Butterfly PUF 

Schematic of the Combinational Trojan inserted circuit shown in fig 5.6 is obtained after synthesis is done. 

The LUTs and other components can be observed in the schematic shown in fig 5.6.   
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                    Fig 5.10 : Schematic Diagram of Butterfly PUF 

The floor planning for the Butterfly PUF circuit is shown in fig 5.11 

 

Fig 5.11 : Floor planning for the Butterfly PUF 
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The simulation results in fig 5.12 shows the normal functioning circuit of Butterfly PUF. 

 

Fig 5.12: Simulation Result of Butterfly PUF 

     

Simulation results: 

NAME VALUE 

LUTs used 5 

On Chip Power 1.298 W 

Junction Temperature 26.2 `C 

 

Table V : Simulation Results of Butterfly PUF 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

Formal methods are great tool in order to prove that the implementation of an electronic design behaves 

as specified. Hence, we identify equivalence checking as adequate measure in order to reveal manipulations 

of the bit-stream configuration, which is well-known state of the art. These type of trojans inserted into the ICs 

are known as the hardware trojans, which are very hard to detect and there is more significance in discovering 

these hardware trojans and eliminating them as early as possible. This project shows that it is easily possible 

to inject malicious behaviour into electronic designs using compromised design tools without being noticed 

by neither the designer nor the state-of-the-art tools targeted at Trojan detection. However, once the design 

complexity increases of both the design and malicious functionality, more sophisticated approaches to 

equivalence checking are needed. Here we had introduced a delay hardware trojan and a combinational 

hardware trojan inside the circuit and through simulation using Vivado Xilinix software and we had listed 

down all the parameters of those trojan inserted circuit and compared them with trojan free circuit which is 

called as the golden circuit here. This method is called as Side Channel Analysis which is a most common 

method for hardware trojan detection.  

  This work provides sharper bounds for the case of detection of hardware trojans using off-the-shelf 

devices, allowing reducing the costs associated with trojan detection. In this manuscript, we highlighted the 

dilemma of finding a one fits all solution to the problem finding hardware trojans fitting different taxonomies. 

To this end, we presented the corner stone for the detection of hardware trojans using off-the-shelf devices. 

We successfully demonstrated the ability of off-the-shelf devices to detect trojans in different settings, namely: 

sleeping and active. We believe that our practical work has the enormous potential in the successful detection 

of hardware trojans. We also believe that our research regarding the Physically Unclonable Functions tells that 

future of our world is completely based on the data, privacy and its security where these PUFs play a crucial 

role. These PUFs are more used where the output of the system to be unique which defines its level of security. 

In the future we will aim at developing techniques to insert more types of complex hardware trojans 

into the circuit and also exploit more detection methods and explore other trojan taxonomies in more intricate 

designs and with advanced malicious purposes. We also believe that these Physically unclonable functions can 

be of more use in situations where a key used for the encryption is to be unique and secure. However this work 

is completely based on the insertion of a combinational and delay trojan into a circuit and then detecting it, so 

this is completely based on the simulation software Vivado Xilinix. But this work can be implemented in the 

hardware/real-time applications. Also the trojan used here in combinational trojan can be minimalised using 

contention such that it is hard to detect the faulty output making the detection of the trojans even more tougher. 

Future work will compare the technique proposed against smaller known trojans and the process variation and 

manufacturing variation will be taken into account. Furthermore, the number of test vectors for Vivado power 

estimator will be increased in order to increase its accuracy. 
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